361 research outputs found

    The role of dynamic response parameters in damage prediction

    Get PDF
    This article presents a literature review of published methods for damage identification and prediction in mechanical structures. It discusses ways which can identify and predict structural damage from dynamic response parameters such as natural frequencies, mode shapes, and vibration amplitudes. There are many structural applications in which dynamic loads are coupled with thermal loads. Hence, a review on those methods, which have discussed structural damage under coupled loads, is also presented. Structural health monitoring with other techniques such as elastic wave propagation, wavelet transform, modal parameter, and artificial intelligence are also discussed. The published research is critically analyzed and the role of dynamic response parameters in structural health monitoring is discussed. The conclusion highlights the research gaps and future research direction

    Leakage analysis of gasketed flange joints under combined internap pressure and thermal loading

    Get PDF
    Leakage in Gasketed Flanged Joints (GFJs) have always been a great problem for the process industry. The sealing performance of a GFJ depends on its installation and applied loading conditions. This paper aims to finding the leak rate through ANSI class#150 flange joints using a compressed asbestos sheet (CAS) gasket under combined structural and thermal transient loading conditions using two different leak rate models and two different bolt-up levels. The first model is a Gasket Compressive Strain model in which strains are determined using finite element analysis. The other model is based on Porous Media Theory in which gasket is considered as porous media. Leakage rates are determined using both leak rate models and are compared against appropriate tightness classes and the effectiveness of each approach is presented

    A time integration scheme for stress - temperature dependent viscoelastic behaviors of isotropic materials

    Get PDF
    A recursive-iterative algorithm is developed for predicting nonlinear viscoelastic behaviors of isotropic materials that belong to the thermorheologically complex material (TCM). The algorithm is derived based on implicit stress integration solutions within a general displacement based FE structural analyses for small deformations and uncoupled thermo-mechanical problems. A previously developed recursive-iterative algorithm for a stress-dependent hereditary integral model which was developed by Haj-Ali and Muliana is modified to include time-temperature effects. The recursive formula allows bypassing the need to store entire strain histories at each Gaussian integration point. Two types of iterative procedures, which are fixed point and Newton-Raphson methods, are examined within the recursive algorithm. Furthermore, a consistent tangent stiffness matrix is formulated to accelerate convergence and avoid divergence. The efficiency and accuracy of the proposed algorithm are evaluated using available experimental data and several structural analyses. The performance of the proposed algorithm under multi-axial conditions is verified with analytical solutions of creep responses of a plate with a hole. Next, the recursive-iterative algorithm is used to predict the overall response of single lap-joint. Numerical simulations of time-dependent crack propagations of adhesive bonded joints are also presented. For this purpose, the recursive algorithm is implemented in cohesive elements. The numerical assessment of the TCM and thermorheologically simple material (TSM) behaviors has also been performed. The result showed that TCM are able to describe thermo-viscoelastic behavior under general loading histories, while TSM behaviors are limited to isothermal conditions. The proposed numerical algorithm can be easily used in a micromechanical model for predicting the overall composite responses. Examples are shown for solid spherical particle reinforced composites. Detailed unit-cell FE models of the composite systems are generated to verify the capability of the above micromechanical model for predicting the overall nonlinear viscoelastic behaviors

    Analytical and numerical assessment of the effect of highly conductive inclusions distribution on the thermal conductivity of particulate composites

    Get PDF
    Highly conductive composites have found applications in thermal management, and the effective thermal conductivity plays a vital role in understanding the thermo-mechanical behavior of advanced composites. Experimental studies show that when highly conductive inclusions embedded in a polymeric matrix the particle forms conductive chain that drastically increase the effective thermal conductivity of two-phase particulate composites. In this study, we introduce a random network three dimensional (3D) percolation model which closely represent the experimentally observed scenario of the formation of the conductive chain by spherical particles. The prediction of the effective thermal conductivity obtained from percolation models is compared with the conventional micromechanical models of particulate composites having the cubical arrangement, the hexagonal arrangement and the random distribution of the spheres. In addition to that, the capabilities of predicting the effective thermal conductivity of a composite by different analytical models, micromechanical models, and, numerical models are also discussed and compared with the experimental data available in the literature. The results showed that random network percolation models give reasonable estimates of the effective thermal conductivity of the highly conductive particulate composites only in some cases. It is found that the developed percolation models perfectly represent the case of conduction through a composite containing randomly suspended interacting spheres and yield effective thermal conductivity results close to Jeffery's model. It is concluded that a more refined random network percolation model with the directional conductive chain of spheres should be developed to predict the effective thermal conductivity of advanced composites containing highly conductive inclusions

    Instant dynamic response measurements for crack monitoring in metallic beams

    Get PDF
    This paper investigates the interdependencies of the modal behaviour of a cantilever beam, its dynamic response and crack growth. A methodology is proposed that can predict crack growth in a metallic beam using only its dynamic response. Analytical and numerical relationships are formulated between the fundamental mode and crack growth using the existing literature and finite element analysis (FEA) software, respectively. A relationship between the dynamic response and the modal behaviour is formulated empirically. All three relationships are used to predict crack growth and propagation. The load conditions are considered the same in all of the experiments for both model development and model validation. The predicted crack growth is compared with the visual observations. The overall error is within acceptable limits in all comparisons. The results obtained demonstrate the possibility of diagnosing crack growth in metallic beams at any instant within the operational conditions and environment

    Fracture life estimation of Al-1050 thin beams using empirical data and a numerical approach

    Get PDF
    A technique based on empirical data and finite element (FE) analysis to predict the fracture life of Al-1050 beams with the help of its fundamental mode is presented in this study. Experiments were performed on a non-prismatic beam vibrating with a constant value of the amplitude at the fixed end until the complete fracture of the specimen was achieved. The beam was vibrating at its fundamental mode to achieve fracture in less time. A power law model was used to acquire the possible trends between the values of natural frequencies and the number of cycles recorded during these experiments. These trends were further compared with a numerically modelled specimen but with artificial cracks. FE modal analysis was used for this comparison. An error of less than 1% was observed in the estimated number of total cycles obtained through the power law model before fracture, compared to those obtained using the numerical approach. Using this approach, the fracture life was also predicted for specimens of different lengths

    A Multiscale Model for Coupled Heat Conduction and Deformations of Viscoelastic Composites

    Get PDF
    This study introduces a multiscale model for analyzing nonlinear thermo-viscoelastic responses of particulate composites. A simplified micromechanical model consisting of four sub-cells, i.e., one particle and three matrix sub-cells is formulated to obtain the effective thermal and mechanical properties and time-dependent response of the composites. The particle and matrix constituents are made of isotropic homogeneous viscoelastic bodies undergoing small deformation gradients. Perfect bonds are assumed along the sub-cell⁰́₉s interfaces. The coupling between the thermal and mechanical response is attributed to the dissipation of energy due to the viscoelastic deformation and temperature dependent material parameters in the viscoelastic constitutive model. The micromechanical relations are formulated in terms of incremental average field quantities, i.e., stress, strain, heat flux and temperature gradient, in the sub-cells. The effective mechanical properties and coefficient of thermal expansion are derived by satisfying displacement- and traction continuities at the interfaces during the thermo-viscoelastic deformations. The effective thermal conductivity is formulated by imposing heat flux- and temperature continuities at the subcells⁰́₉ interfaces. The expression of the effective specific heat at a constant stress is also established. A time integration algorithm for simultaneously solving the equations that govern heat conduction and thermoviscoelastic deformations of isotropic materials is developed. The algorithm is then incorporated within each sub-cell of the micromechanical model together with the macroscopic energy equation to determine the effective coupled thermoviscoelastic response of the particulate composite. The numerical formulation is implemented within the ABAQUS, general purpose displacement based FE software, allowing for analyzing coupled heat conduction and deformations of composite structures. Experimental data on the effective thermal properties and time dependent responses of particulate composites available in the literature are used to verify the micromechanical model formulation. The multiscale model capability is also examined by comparing the field variables, i.e., temperature, displacement, stresses and strains, obtained from heterogeneous and homogeneous composite structures, during the transient heat conduction and deformations. Examples of coupled thermoviscoelastic analyses of particulate composites and functionally graded structures are also presented. The present micromechanical modeling approach is found to be computationally efficient and shows good agreement with experiments in predicting the effective thermo-mechanical response of particulate composites and functionally graded materials. Our analyses forecast a better design for creep resistant and less dissipative structures using particulate composites and functionally graded materials

    Micromechanical modeling approach with simplified boundary conditions to compute electromechanical properties of architected piezoelectric composites

    Get PDF
    Architected piezoelectric composites (PCs) have recently gained interest in designing transducers and nondestructive testing devices. The current analytical modeling approach cannot be readily applied to design architected periodic PCs exhibiting elastic anisotropy and piezoelectric activity. This study presents a micromechanical (MM)-model based finite element (FE) modeling framework to predict the electromechanical properties (EMPs) of the architected PCs. As an example, the microstructure with one-dimensional (1-3 PCs) connectivity is considered with different cross-sections of fibers. 3D FE models are developed. The intrinsic symmetry of architected composite is used to derive boundary conditions equivalent to periodic boundary conditions (PBCs). The proposed approach is simple and eliminates the need for a tedious mesh generation process on opposite boundary faces on the MM model of architected PCs. The EMPs of 1-3 PCs calculated from the proposed micromechanics-FE models were compared with those obtained from analytical solutions (i.e. based on micromechanics theories), and FE homogenization (i.e. obtained by employing the PBCs available in the literature). A quite good agreement between the proposed modeling approach and the ones obtained using the analytical model was observed. However, an excellent agreement is observed with the MM results that employed PBCs. Hence, we have concluded that the proposed MM modeling approach is equivalent to MM models that employed PBCs. The computed enhanced effective elastic, piezoelectric, and dielectric properties and corresponding figure of merit (FOM) revealed that 1-3 PCs are suitable in transducer applications

    Response of Gaussian-modulated guided wave in aluminum: An analytical, numerical, and experimental study

    Get PDF
    The application of guided-wave ultrasonic testing in structural health monitoring has been widely accepted. Comprehensive experimental works have been performed in the past but their validation with possible analytical and numerical solutions still requires serious efforts. In this paper, behavior and detection of the Gaussian-modulated sinusoidal guided-wave pulse traveling in an aluminum plate are presented. An analytical solution is derived for sensing guided wave at a given distance from the actuator. This solution can predict the primary wave modes separately. Numerical analysis is also carried out in COMSOLÂź Multiphysics software. An experimental setup comprising piezoelectric transducers is used for the validation. Comparison of experimental results with those obtained from analytical and numerical solutions shows close agreement

    A novel approach for damage quantification using the dynamic response of a metallic beam under thermo-mechanical loads

    Get PDF
    This paper investigates the interdependencies of crack depth and crack location on the dynamic response of a cantilever beam under thermo-mechanical loads. Temperature can influence the stiffness of the structure, thus, the change in stiffness can lead to variation in frequency, damping and amplitude response. These variations are used as key parameters to quantify damage of Aluminum 2024 specimen under thermo-mechanical loads. Experiments are performed on cantilever beams at non-heating (room temperature) and elevated temperature, i.e., 50 °C, 100 °C, 150 °C and 200 °C. This study considers a cantilever beam having various initially seeded crack depth and locations. The analytical, numerical and experimental results for all configurations are found in good agreement. Dynamic response formulation is presented experimentally on beam for the first time under thermo-mechanical loads. Using available experimental data, a novel tool is formulated for in-situ damage assessment in the metallic structures. This tool can quantify and locate damage using the dynamic response and temperature including the diagnosis of subsurface cracking. The obtained results demonstrate the possibility to diagnose the crack growth at any instant within the operational condition under thermo-mechanical loads
    • 

    corecore